
These best practices were developed within the 
RVO Energy Footprint Project, supported by the 
Knowledge Network Green Software (KNGS) and 
the Cluster Green Software. The Cluster Green 
Software project is a new technical and scientific 
regional cluster in the Amsterdam Metropolitan 
Area (AMA). 

Within this cluster the participating organisations 
contribute towards work on:

pp The mapping of the energy consumption in (large) 
systems which is caused by the use of software and 
the search for opportunities to reduce the energy 
usage of software.

pp The development of tools for users of large software 
systems to enable them to manage energy costs.

Kngs.wikidot.com
www.clustergreensoftware.nl
www.sefindex.org

Professor dr. ir. Joost Visser
Chairman KNGS

1. Use a virtualised environment where possible
Footprint measurements clearly show that a virtual server 
is ten times more energy efficient than a physical server. 
The superfluous capacity of the server can be used by 
other applications. When creating the architecture of an 
application, bear in mind that all parts will be virtualised.

2. Make use of the energy efficiency settings 
offered by the hardware and virtualisation layer 
Energy footprint measurements show that the use of 
energy-efficient hardware settings (for example, using 
CPU C-states) is not trivial in deployed servers and other 
hardware in the data centre. Even “pre-tuned variables” 
are changed to less energy-efficient settings without 
considering the consequences.

3. Provide a measurement infrastructure for 
determining energy KPIs during the rollout of 
the application in its production environment
Turning on energy measurements afterwards is not 
cost‑effective and is often difficult. The availability of 
energy measurements is imperative for checking the 
energy efficiency of applications.

Ten best 
practices for a 
green IT system
RVO Energy Footprint Project, Knowledge Network 
Green Software (KNGS) and the Cluster Green Software

best practises

g e t t i n g s o f t w a r e r i g h t



4. Dare to consider approaches that lead to 
more energy effective solutions
The trends and effects of changes to the system can 
become apparent by using the measurement infrastructure. 
In many situations, the operations team is afraid to 
make changes and as a consequence energy inefficient 
situations persist. Lower energy efficiency comes to light 
if the system is experimented with and explored from the 
beginning, when knowledge about the system is still ‘fresh’. 
Share the knowledge about the system among the teams, 
including the operations team.

5. Replace older hardware with new hardware 
in time
Older hardware (more than three years old) is less 
efficient than the latest hardware. The capacity and 
processing power of hardware (and software) improves 
every year. By postponing replacement, energy inefficient 
situations may continue to exist.

6. Limit the oversizing of systems
Projects and systems often need several years before the 
projected load on the systems is reached. During the first 
period of deployment, significant oversizing may occur. 
This is not a desirable situation, since the system is often 
not used in an efficient manner during this period. This 
situation can be prevented by not initially sizing the system 
according to its final dimensions; instead gradually increase 
its capacity. Redundant capacity should be released for other 
applications’ use.

7. Reconsider availability requirements
Application owners tend to exaggerate the availability 
requirements to create safety margins for their application. 
Very often the requirements prove not to be realistic; 
however the infrastructure has already been delivered 
and is operational. In such cases it is necessary to have a 
process to reconsider the requirements. The software under 
investigation must support the possible outcomes (use less 
hardware/capacity).

8. Only activate the test and failover 
environment when needed
Configure the test and failover environment so that they 
are only switched on when they are actually needed. It is 
common for testing and disaster recovery environments to 
be left on continuously. Acceptance environments are only 
used during new release testing. Make starting and stopping 
a test and disaster recovery environment relatively simple.

9. Optimise for performance
Performance optimisations, like improving hardware 
resource consumption (CPU/memory etc.) relative to the 
amount of work (transactions), often lead to a reduction 
in energy consumption. A lot of tooling and experience is 
available for performance analysis, so use it! An environ
ment is often sized based on its peak load. Increasing the 
capacity while using the same hardware can have a big 
effect on the energy-efficiency.

10. Take the workload pattern into account when 
sizing the system
Many systems show a pattern in the workload: a constant 
load or a peak once a day, week, month or year. Determine 
the anticipated workload and design the system in such 
a way that it can handle the variation. In a system with a 
constant load, less spare capacity is needed to cope with 
the variation. If a system shows an annual peak in its load, 
the system can be scaled down during the rest of the year.

#KNGS
Knowledge Network Green Software

– Connecting the Green Software world–

This research was conducted in collaboration with:


